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Abstract. Interaction nets are a graphical formalism inspired by Lin-
ear Logic proof-nets often used for studying higher order rewriting e.g.
β-reduction. Traditional presentations of interaction nets are based on
graph theory and rely on elementary properties of graph theory. We give
here a more explicit presentation based on notions borrowed from Gi-
rard’s Geometry of Interaction: interaction nets are presented as partial
permutations and a composition of nets, the gluing, is derived from the
execution formula. We then define contexts and reduction as the context
closure of rules. We prove strong confluence of the reduction within our
framework and show how interaction nets can be viewed as the quotient
of some generalized proof-nets.

1 Introduction

Interaction nets were introduced by Yves Lafont in [Laf90] as a way to extract a
model of computation from the well-behaved proof-nets of multiplicative linear
logic. They have since been widely used as a formalism for the implementation of
reduction strategies for the λ-calculus, providing an intuitive way to do explicit
substitution [Mac98][MP98][Lip03].

Interaction nets are easy to present: a net is made of cells

A

with a fixed number of connection ports, depicted as big dots on the picture,
one of which is distinguished and called the principal port of the cell, and of free
ports, and of wires between those ports such that any port is linked by exactly
one wire. Then we define reduction on nets by giving rules of the form

s2s1 → s2s1R(s1, s2)

where the two cells in the left part are linked by their principal ports and the
box in the right part is a net with the same free ports as the left part. Such a
rule can be turned into a reduction of nets: as soon as a net contains the left
part we replace it with the right part.
? This work is supported by the French ANR project CHoCo



Even though this definition is sufficient to work with interaction nets, it is
too limited to reason on things like paths or observational equivalence. One of
the main issues comes from the fact that we do not really know what a net is.
The situation is quite similar for graphs: we cannot study them relying using
drawings only without being deceived by our intuition. Thus, we are inclined to
give a precise definition of a graph as a binary relation or as a set of edges.

The main issue to give such a definition for interaction nets is that it should
cope with reduction. As an example consider a graph-like construction over ports
and a rule

s2s1 → s2s1

Can it be applied to the interaction net s2s1 ? If we are rigorous the

left part of the rule is not exactly contained in this net as is not contained in

. Perhaps we could consider this last wire as composed of three smaller ones
and two temporary ports like in and the whole net after reduction would

be s2s1 . But then, to get back a real interaction nets we would have

to concatenate all those wires and erase the temporary ports, which would give
us the net . We will refer to this process of wire concatenation as port
fusion.

There are many works giving definitions of interaction nets giving a rigorous
description of reduction. Nevertheless, they all share a common point: they deal
either implicitly or externally with port fusion. In the seminal article [Laf90] a
definition of nets as terms with paired variables is given, it is further refined
in [FM99]. In this framework an equivalence relation on variables deals with
port fusion. In [Pin00] a concrete machine is given where the computation of
the equivalence relation is broken into many steps. A rigorous approach sharing
some tools with ours is given in [Vau07], port fusion is done there by an external
port rewriting algorithm.

Therefore, we raise the following question: can we give a definition of interac-
tion nets allowing a simple and rigorous description of reduction encompassing
port fusion, and upon which we can prove results like strong confluence? This is
the aim of this paper.

Our proposition is based on the following observation. When we plug the right
part of a rule in a net, new wires are defined based on a back and forth process
between the original net and this right part. Such kind of interaction is key
to the geometry of interaction [Gir89] or game semantics [AJM94,HO00]. The
untyped nature of interaction nets makes the former a possible way to express
them. To be able to do so we need to express an interaction net as some kind
of partial permutation and use a composition based on the so-called execution
formula. Such presentation of multiplicative proof-nets has been made by Jean-
Yves Girard in [Gir87]. If we try to think about the fundamental actions one
needs to be able to do on interaction nets, it is quite clear that we can distinguish



a wire action consisting in going from one port to another along a wire and the
cell action consisting in going from one cell port to another inside the same cell.
Those two actions lead to the description of a net as a pair of permutations.
One might ask whether it is possible in some case to faithfully combine this pair
in only one permutation, a solution to this question is what one could call a
geometry of interaction.

The issue of port fusion is not inherent to interaction nets and can be found
in other related frameworks. Diagram rewriting [Laf03] uses a well-behaved un-
derlying category allowing mathematically the straightening of wires. But this
is not free: the presentation is now vertically directed and lack the ease of defi-
nition of interaction nets for describing programs. Another work related to this
problem is the presentation of multiplicative proof-nets by Hughes in [Hug05]
where the author presents proof-nets as functions with a composition based on a
categorical construction associated to traced monoidal categories [JSV96] which
has been used to analyse Girard’s geometry of interaction [AJ92,HS06]. A large
part of our framework could be seen as a special case of a similar general cate-
gorical construction. Indeed, we are using the same tool as in those semantics,
but our specialization to the partial injections of integers allows us to work on
syntax and to stay in a completely untyped world.

2 Permutations and partial injections

We give here the main definitions and constructions that are going to be central
to our realization of interaction nets. Those definitions are standard in the partial
injections model of geometry of interaction [Gir87,DR95] or in the definition of
the traced monoidal category PInj [HS06].

2.1 Permutations

We recall that a permutation of a set E is any bijection acting on E and we write
S(E) for the set of these permutations. For σ ∈ S(E) we call order the least
integer n such that σn = idE , for x ∈ E we write Orbσ(x) = {σi(x) | i ∈ N} and
we call it the orbit of x, we write Orbs(σ) for the orbits of σ. If o is an orbit we
write |o| for its size.

We write (c1, . . . , cn) for the permutation sending ci to ci+1, for i < n, cn to
c1 and being the identity elsewhere, we call it a cycle of length n which is also
its order. Any permutation is a compound of disjoint cycles.

Let σ be a permutation of E and L any set, we say that σ is labelled by L
if we have a function lσ : Orbs(σ)→ L. We say that σ has pointed orbits if it is
labelled by E and ∀o ∈ Orbs(σ) we have lσ(o) ∈ o. Remark that an orbit is a
sub-cycle and thus, having pointed orbits means that we have chosen a starting
point in those sub-cycles.



2.2 Partial injections

A partial injection (of integers) f is a bijection from a subset dom(f) of N, called
its domain, to a subset codom(f) of N, called its codomain. We write f : A� B
to say that f is any partial injection such that dom(f) = A and codom(f) = B.
We write f? for the inverse of this bijection viewed as a partial injection. We
call partial permutation a partial injection f such that dom(f) = codom(f).

2.3 Execution

Let f be a partial injection and E′, F ′ ⊆ N. We write f �E
′

F ′ for the partial
injection of domain {x ∈ E′ ∩ domf | f(x) ∈ F ′} ans such that f �E

′

F ′(x) = f(x)
where it is defined. We have

f �E
′

F ′ : f−1(F ′) ∩ E′ � f(E′) ∩ F ′

If E = F and E′ = F ′ we write f�E′ = f �E
′

E′ .
When dom(f) ∩ dom(g) = ∅ and codom(f) ∩ codom(g) = ∅, we say that f

and g are disjoint and we define the sum f + g and the associated refining order
≺ as expected. We have dom(f + g) = dom(f) ] dom(g) where ] is the disjoint
union.

Property 1 Let f : A ]B � C ]D and g : D � B a situation depicted by the

following diagram
A ]B C ]D

f

g
.

i For all n ∈ N, the partial injection from A to C

Exn(f, g) = f �AC + (fgf)�AC + · · ·+ (f(gf)n)�AC
is well defined.

ii (Exn(f, g))n∈N is an increasing sequence of partial injections with respect to
≺, whose limit, the increasing union, is noted Ex(f, g).

iii If dom(f) is finite the sequence (Exn(f, g))n is stationary and

Ex(f, g) : A� C

Fig. 1 gives a graphical presentation of execution.
Proof i) To assert the validity of the sum all we have to have show is that
∀i 6= j ∈ N :

(f(gf)i)(A) ∩ (f(gf)j)(A) ∩ C = ∅
(f(gf)i)−1(C) ∩ (f(gf)j)−1(C) ∩A = ∅

Suppose there is a x ∈ (f(gf)i)(A) ∩ (f(gf)j)(A) ∩ C, we set y and z ∈ A
such that x = f(gf)i(y) = f(gf)j(z). We can further suppose that i < j, and
we have y = (gf)j−i(z) ∈ B, which is contradictory as y ∈ A and A ∩B = ∅.
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Fig. 1: Representation of Ex(f, g) with the notations of property 1

The other equality is proved in the same way.
ii) Let n ≤ m ∈ N and x ∈ dom(Exn(f, g)), by definition of the sum

there exists a unique k such that Exn(f, g)(x) = (f(gf)k)(x). But then x ∈
dom(Exm(f, g)) and the uniqueness of k asserts that Exm(f, g)(x) = (f(gf)k)(x).
Thus, Exm(f, g) is a refinement of Exn(f, g).

iii) Suppose there is a x ∈ A − dom(Ex(f, g)), then we should have for
all k, (f(gf)k)(x) ∈ D or else Ex(f, g)(x) would be defined. But D being fi-
nite, there exists n ≤ m such that (f(gf)n)(x) = (f(gf)m)(x) and we get
x = (gf)m−n(x) ∈ B which is contradictory. A simple argument on cardinal
show then that codom(Ex(f, g)) = C. �

Theorem 2 (Associativity of execution)

Let A ]B ] C D ] E ] F
f

g

h

be three partial injections. We

have ∀n ∈ N

Exn(Exn(f, g), h) = Exn(f, g + h) = Exn(Exn(f, h), g)

and thus
Ex(Ex(f, g), h) = Ex(f, g + h) = Ex(Ex(f, h), g)

Proof Let p ∈ dom(Exn(f, g + h)), there exists m ≤ n ∈ N such that

Exn(f, g + h)(p) = f((g + h)f)m(p)
= (f(gf)i1)h . . . h(f(gf)ik)(p) with i1 + · · ·+ ik + k − 1 = m

= (Exn(f, g)hExn(f, g) . . . hExn(f, g))(p)
= (Exn(f, g)(hExn(f, g))k−1)(p)
= Exn(Exn(f, g), h)(p)

By commutativity of + we get the other equality. These equalities are directly
transmitted to Ex. �



This theorem is of utter significance, it is a completely localized version of
Church-Rosser property. Indeed, we will see later that confluence results are
corollary of this theorem.

2.4 w-permutations and Ex-composition

We call w-permutation an involutive partial permutation of finite domain.
Let σ and τ be disjoint w-permutations and let f be a partial injection with

dom(f) ⊆ dom(σ) and codom(f) ⊆ dom(τ). We call the Ex0-composition of σ
and τ along f the partial permutation

σ
f!0 τ = Ex(σ + τ, f + f?)

τ

τ

f + f?

σσ

(σ
f!0 τ)(i)

i

Fig. 2: Representation of the Ex0-composition σ
f!0 τ

Fig. 2 gives a representation of this composition.

Property 3 σ
f!0 τ is a w-permutation.

Proof Let x be an element of dom(σ + τ), there exists n such that (σ
f!0

τ)(x) = (f + f?)[(σ + τ)(f + f?)]n(x). Note that (f + f?)? = f + f? and
(σ+τ)? = σ+τ , and thus, we have ((f +f?)[(σ+τ)(f +f?)]n)? = [(f +f?)(σ+

τ)]n(f + f?) = (f + f?)[(σ + τ)(f + f?)]n. So (σ
f!0 τ)2(x) = x. �

To define the final Ex-composition we want to recover the fix-points hidden
by Ex in order to get the usual notion of loops. Suppose that there is an x0 such
that:

x0
σ+τ−−−→ y0

f+f?

−−−→ x1 . . .
σ+τ−−−→ yn

f+f?

−−−→ xn = x0

Everything being involutive, this loop is reversible and we get a new loop

y0
f+f?

←−−− x1 . . .
σ+τ←−−− yn f+f?

←−−− x0
σ+τ←−−− y0

We say that the set {x0, y0, . . . , xn−1, yn} forms a double orbit, and we it can be
fully reconstructed from any of its element. Therefore, recall that all this points
are integers, and let R be a set comprised of the least element of each double



orbit. We can define the Ex-composition, written σ
f! τ , extending σ

f!0 τ on
R by (σ

f! τ)(r) = r for r ∈ R.
We can now give a direct corollary of theorem 2, stating some kind of asso-

ciativity for the Ex-composition.

Corollary 4 Let σ, τ, ρ be pairwise disjoint w-permutations with

dom(σ) = A ] B ] C

dom(τ) = D ] E ] F

dom(ρ) = G ] H ] I

f

g

h

We have σ
f+g! (τ h! ρ) = (σ

f! τ)
g+h! ρ = (σ

g! ρ)
f+h! τ . When h = 0

we get σ
f+g! (τ + ρ) = (σ

f! τ)
g! ρ = (σ

g! ρ)
f! τ .

3 The statics of interaction nets

We fix a countable set S, whose elements are called symbols, and a function
α : S → N, the arity. We will define nets atop N and in this context an integer
will be called a port.

Definition 5 An interaction net is an ordered pair R = (σw, σc) where:

– σw is a w-permutation. We write Pl(R) for the fixed points of σw and P (R)
for the others.

– σc is a partial permutation of P (R) with pointed orbits and labelled by S in
such a way that ∀o ∈ Orbs(σc), |o| = α(l(o)) where l is the labelling function.

The elements of Pl(R) are called loops and the other orbits of σw, which are
necessarily of length 2, are called wires. The domain of σw is called the carrier
of the net. We write Pc(R) = dom(σc), whose elements are called cell ports, and
Pf (R) = P (R)− Pc(R), whose elements are called free ports.

An orbit of σc is called a cell. We write pal for the pointing function of σw.
Let c be a cell, pal(c) is its principal port and for i < |c| the element (σic ◦pal)(c)
is its ith auxiliary port.

Note that a port is present in exactly one wire and at most one cell.

3.1 Representation

Nets admit a very natural representation. We shall draw a cell of symbol A as
a triangle A where the principal port is the dot on the apex and auxiliary



ports are lined up on the opposing edge. We draw free ports as points. To finish
the drawing we add a line between any two ports connected by a wire, and draw
circles for loops.

As an example consider the net R = (σw, σc) with

σw = (1)(2 3)(4 5)(6 7)(8 9) and σc = (
•
4 3)A(

•
5 6 7)B

where permutations are given by cycle decomposition and (
•
c1 c2 . . . cn)S is a

cell of point c1 and symbol S. This net will have the representation

1 A B
2 3 4 5 7

6

8

9

3.2 Morphisms of nets and renaming

Definition 6 Let R = (σw, σc) and R′ = (σ′w, σ
′
c) be two interaction nets. The

function f : P (R) 7→ P (R′) is a morphism from R to R′ iff

f ◦ σw = σ′w ◦ f, f(Pc(R)) ⊆ Pc(f(R′)),

∀p ∈ Pc(R), (f ◦ σc)(p) = (σ′c ◦ f)(p),

and ∀o ∈ Orbs(σc) we have (f ◦pal)(o) = (pal◦f)(o) and l(o) = (l ◦f)(o). When
f is the identity on Pf (R) it is said to be an internal morphism.

Let us detail a bit more this definition. We note that for any two partial
permutations σ and τ , the equation f ◦ σ = τ ◦ f induces that a o ∈ Orbs(σ) is
mapped to an element f(o) ∈ Orbs(τ) such that |f(o)| is a divisor of |o|.

In this case a loop is sent to a loop, a wire to a loop or a wire, and a cell to
another cell. The last two equations say that the principal port of cell is mapped
to a principal port, and symbols are preserved. So a cell is mapped to a cell of
same arity, and each port is mapped to the same type of port. Moreover only a
wire linking free ports can be mapped to a loop or any kind of wire. As soon as
the wire is linking one cell port the third condition on the morphism must send
it to a wire of the same type.

With this remark, it is natural to call renaming (resp. internal renaming)
an isomorphism (resp. internal isomorphism). An isomorphism class captures
interaction nets as they are drawn on paper. On the other hand, an internal
isomorphism class corresponds to interaction nets drawn where we have also
given distinct names to free ports, hence the name internal. This is an important
notion because the drawing is the same as Whereas the drawing

a b

c d
is different from

c

ba
d

.

Remark 7 Given the fact that nets have finite carriers we can always consider
that two nets have disjoint carriers up to renaming.



4 Tools of the trade

4.1 Gluing and cutting

Definition 8 Let R = (σw, σc) and R′ = (σ′w, σ
′
c) be two nets with disjoint

carriers 1 and let f : Pf (R) ↪→ Pf (R′). We call gluing of R and R′ along f the

net R
f! R′ = (σw

f! σ′w, σc + σ′c).

From this definitions we get the following obvious facts:

P (R
f! R′) = (P (R)− dom(f)) ] (P (R′)− codom(f))

Pc(R
f! R′) = Pc(R) ] Pc(R′)

Pf (R
f! R′) = (Pf (R)− dom(f)) ] (Pf (R′)− codom(f))

R
f! R′ = R′

f?

! R

For the special case of gluing where f = 0 we have R 0! R′ = (σw+σ′w, σc+σ′c),
we write this special kind of gluing R+R′, it is the so-called parallel composition
of the two nets. Fig. 3 gives a representation of gluing.

Property 9 If R = R
f! R′ then f = 0 and R′ = 0 = (0, 0). If 0 = R

f! R′

then f = 0 and R = R′ = 0.

Proof We will only prove the first assertion, the second being similar. It is
a direct consequence of the previous facts, R′ must have no cells, no free ports
and no loops. The only net having this property is the empty net 0. �

We can get some kind of associativity property for gluing.

Property 10 Let R = (σw, σc), S = (τw, τc) and T = (ρw, ρc) be nets of dis-
joint carriers and let f, g and h be partial injections satisfying the diagram of
corollary 4 with respect to σw, τw and ρw.

We have R
f+g! (S h! T ) = (R

f! S)
g+h! T = (R

g! T )
f+h! S.

Proof The wire part of the equality is a restriction of corollary 4 and the cell
part is the associativity of +. �

The following corollary will often be sufficient.

Corollary 11 If we have a decomposition R0 = R
f! (S

g! T ) then there

exists fS , fT such that R0 = (R
fS! S)

g+fT! T .

We can use the gluing to define dually the notion of cutting a subnet of an
interaction net.
1 Which is not a loss of generality thanks to remark 7.



R R′
f

−→ R
f! R′

Fig. 3: Representation of the gluing of two interaction nets

f

R1

R2

(a)

f

R1

R2

(b)

Fig. 4: Representation of two special cuttings: (a) a cutting of a single wire and
(b) a cutting of a loop

Definition 12 Let R be a net, we call cutting of R a triple (R1, f, R2) such

that R = R1
f! R2. Any net R′ appearing in a cutting of R is called a subnet

of R, noted R′ ⊆ R.

The Fig. 4 gives an example of cutting. The fact that we can cut many times
a wire or that we can divide a loop in many wires hints at the complexity behind
these definitions.

Property 13 The relation ⊆ is an ordering of nets.

Proof The relation ⊆ is reflexive: R = R
0! 0 and thus, R ⊆ R.

It is antisymmetric: let R1 and R2 be nets such that R1 ⊆ R2 and R2 ⊆ R1.
We have R1 = R2

f! R′2 and R2 = R1
g! R′1.

So R2 = (R2
f! R′2)

g! R′1. By applying the corollary 11 we get R2 =

R2
f1! (R′2

g+f2! R′1). and by applying the property 9 twice we get R′2 = R′1 = 0.
So R1 = R2.

And it is transitive: let R ⊆ S ⊆ T , then S = R
f! R′ and T = S

g! S′,
so T = (R

f! R′)
g! S′. By applying the corollary 11 we have T = R

f1!
(R′

g+f2! S′), that is to say R ⊆ T . �

4.2 Interfaces and contexts

To define reduction by using the subnet relation, it would be easier if we could
refer implicitly to the identification function in a gluing. As an intuition, consider
terms contexts with multiple holes, to substitute completely such contexts we
could give a function from holes to terms and fill them accordingly. But a more
natural definition would be to give a distinct number to each hole and to fill



based on a list of terms. The substitution would give the first term to the first
hole, and so on. The following definition is a direct transposition of this idea in
the framework of interaction nets.

Definition 14 We call interface of a net R a subset I = {p1, . . . , pn} of Pf (R)
together with a linear ordering, the length of the order chain p1 < · · · < pn is
called the size. We say that R contains the interface I, noted I ⊂ R. An interface
is canonical if it contains all the free ports of a net.

Let I and I ′ be disjoint interfaces of the same net, we write II ′ the union
of these subsets ordered by the concatenation of the two order chains. Precisely
x ≤II′ y ⇐⇒ x ≤I y or x ≤I′ y or x ∈ I ∧ y ∈ I ′.

Let I and I ′ be two interfaces of same order, there exists one and only order-
preserving bijection from I to I ′ that we write ρ(I, I ′) and call the chord between
I and I ′.

We call context a couple (R, I) where I is an interface contained in the net
R, it is written RI .

Let RI and R′I
′

be two contexts with interfaces of same order, we write

RI! R′I
′

= R
ρ(I,I′)! R′

In the following when we write RI ! R′I
′

we implicitly assume that I and
I ′ are of same size.

We now can state commutativity of gluing directly, the proof being trivial.

Property 15 (Commutativity of gluing) RI! R′I
′

= R′I
′
! RI

The following trivial fact asserts that any gluing can be seen as a context
gluing.

Fact 16 Let R
f! R′ be a gluing, there exist interfaces I ⊂ R and I ′ ⊂ R′ of

same order such that R
f! R′ = RI! R′I

′
.

Corollary 17 R1 ⊆ R ⇐⇒ ∃I1, R2, I2 such that R = R1
I1 ! R2

I2

We can now restate the corollary 11 with interfaces:

Corollary 18 For all nets R,S, T and interfaces I, J,K,L, there exists inter-
faces I ′, J ′,K ′, L′ such that

RI! (SJ ! TK)
L

= (RI
′ ! SJ

′
)
L′

! TK
′



5 Dynamics

Definition 19 Let s1 and s2 be symbols. We call interaction rule for (s1, s2) a
couple (RrIr , Rp

Ip) where

Rr =

(
(b c)(a1 b1) . . . (an bn)(c1 d1) . . . (cm dm),

(
•
b b1 . . . bn)s1(

•
c c1 . . . cm)s2

)

and Ir and Ip are both canonical – comprised of all free ports – and of same size.

Let R = (RrIr , Rp
Ip) be a rule we call reduction by R the binary relation R−→

on nets such that for all renaming α and β, and for all net S with S = RI !
α(Rr)

α(Ir) we set S R−→ S′ where S′ = RI! β(Rp)
β(Ip).

The net Rr has the representation s2s1 . Remark that the re-

duction is defined as soon as a net contains a renaming of the redex Rr. This
reduction appears to be non-deterministic but it is only the expansion of a de-
terministic reduction to cope with all possible renamings.

Property 20 Let R be a net and R1, R2 be two interaction rules applicable on
R on distinct redexes such that R1

R1←−− R
R2−−→ R2 and all the ports both in R1

and R2 are also in R. There exists a net R′ such that R1
R2−−→ R′ R1←−− R2.

Proof For i = 1, 2, set Ri = (Rr,iIr,i , Rp,i
Ip,i). The shape of redexes allow

us to assert that if they are distinct then they are disjoint. As R contains both
a redex α1(Rr,1) and a redex α2(Rr,2), then we can deduce that α1(Rr,1) +
α2(Rr,2) ⊆ R. More precisely we have

R = (α1(Rr,1) + α2(Rr,2))α1(Ir,1)α2(Ir,2) ! R0
I

We get
R1 = (β1(Rp,1) + α2(Rr,2))β1(Ip,1)α2(Ir,2) ! R0

I

for a renaming β1, and the same kind of expression for R2. It is straightforward
to check that the net

R′ = (β1(Rp,1) + β2(Rp,2))β1(Ip,1)β2(Ip,2) ! R0
I

satisfies the conclusion by applying property 10. The very existence of this net
relies on the disjointness of the βi(Rp,i) which is ensured by the hypothesis on
ports contained in both R1 and R2. �

Corollary 21 Let L be a set of rules such that for any pair of symbols there is
at most one rule over them. The reduction L−→=

⋃
R∈L

R−→ is strongly confluent
up to a renaming.



By up to a renaming we mean that we might have to rename one of the nets
in a critical pair before joining them. This is due to the disjointness condition
in property 20. Remark that we can always substitute one of the branch of the
critical pair by another instance of the same rule on the same redex in such a
way that this condition is ensured.

6 Interaction nets are the Ex-collapse of Axiom/Cut nets

We introduce now a notion of nets lying between proof-nets of multiplicative
linear logic and interaction nets. When we plug directly two interaction nets a
complex process of wire simplification occurs. When we plug two proof-nets we
only add special wires called cuts and we have an external notion of reduction
performing such simplification. In this section we define nets with two kinds
of wires: axioms and cuts. Those nets allow us to give a precise account of the
folklore assertion that interaction nets are a quotient of multiplicative proof-nets.

6.1 Definition and juxtaposition

Definition 22 An Axiom/Cut net, AC net for short, is a tuple R = (σA, σC , σc)
where:

– σA and σC are w-permutations of finite domain included in P, such that
dom(σC) ⊆ dom(σA), σC has no fixed points and if (a b) is an orbit of σC
then there exists c 6= a and d 6= b such that (c a) and (b d) are orbits of σA
We write Pl(R) for the fixed points of σA and P (R) = dom(σA)−dom(σC)−
Pl(R).

– σc is an element of S(Pc(R)), where Pc(R) ⊆ P (R), has pointed orbits and
is labelled by S in such a way that ∀o ∈ Orbs(σc), |o| = α(l(o)) where l is the
labelling function.

The orbits of σC , called cuts, are some kind of undirected unary cells linking
orbits of σA, called axioms.

We directly adapt the representation of interaction nets to AC nets by dis-
playing σc as double edges. For example the AC net R = (σA, σC , σc) with

σA = (1 2)(3 4)(5 6), σC = (2 3), σc = (
•
4 5)s

will be represented by s .
We can adapt most of the previous definitions for those nets, most impor-

tantly free ports, interfaces and contexts. The nice thing about AC nets is that
they yield a very simple composition.

Definition 23 Let RI = (σA, σC , σc) and R′I
′

= (τA, τC , τc) be two contexts on
AC nets with disjoint carriers, with I = i1 > · · · > in and I ′ = i′1 > · · · > i′n.

We call juxtaposition of RI and R′I
′

the AC net

RI ↔ R′I
′

= (σA + τA, σC + τC + (i1 i′1) . . . (in i′n), σc + τc)



The juxtaposition is from the logical point of view a generalized cut, and its
interpretation in terms of permutation is exactly the definition made by Jean-
Yves Girard in [Gir87].

6.2 Ex-collapse

Property 24 Let R = (σA, σC , σc) be an AC net and f : P ↪→ P be such that
dom(σC) = dom(f) and codom(f) ∩ dom(σA) = ∅.

The couple (σA
f! f ◦ σC ◦ f?, σc), is an interaction net.

It does not depend on f and we call it the Ex-collapse of R, noted Ex(R).

For the definition of the Ex-composition to be correct, we have to delocal-
ize σC to a domain disjoint from dom(σA). The Ex-collapse amounts to re-
place any maximal chain a1

σA−−→ b1
σC−−→ a2 . . . bn−1

σA−−→ an by a chain a1
σA−−→

b1
f−→ f(b1)

f◦σC◦f?

−−−−−−→ f(a2)
f?

−→ . . . bn−1
σA−−→ an and then to compute the Ex-

composition to get a1
σA

f
!σC−−−−−−→ an.

Proof It comes from the definitions of the Ex-composition and from prop-
erty 3. �

Property 25 For each interaction net R there exists a unique AC net R′ of the
form (σA, 0, σc) such that Ex(R′) = R. R′ is said to be cutfree.
Proof If R = (τw, τc) we only have to take R′ = (τw, 0, τc). Uniqueness comes
from the fact that σ 0! 0 = σ. �

Definition 26 Let R and R′ be two AC nets, we say that R and R′ are Ex-
equivalent, noted R !∼ R′ when Ex(R) = Ex(R′).

We have an obvious correspondence between juxtaposition and gluing.

Property 27 Ex(RI ↔ R′I
′
) = Ex(R)I! Ex(R′)I

′

Therefore we can claim that

Interaction nets are the quotient of AC nets by !∼ .

Conclusion

We could not include all of the possible extensions of our framework in this
paper. Most of this results can be found in [dF09]. We have: 1) a double-pushout
approach to reduction by mean of the category of interaction nets and morphisms
(2) a rigorous definition of boxes as a partial labelling of cells (3) definitions of
paths in a net, path reduction and proofs that the path reduction is strongly
confluent (4) a full implementation in Haskell.
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